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We make a qualitative investigation of a dynamic system by bifurcation-theore- 
tic methods [l], using the property of the monotonic rotation of the direction 
field. We trace the possible bifurcations and the behavior of the bifurcation cur- 
ves in various sections of the parameter space. The system has been examined 
before p, 31, however, a complete qualitative investigation has not been made. 

1. Rotation of the field. We examine the system 

4 -= 
dt Y = p, A$+ silt (p - 2as 1/_ = s- i_ y- Q (1.1) 

for positive a, fi and S. The difference between the direction fields of system (1.1) 
with parameters P, ccO, s0 and of an altered system with parameters p, a,, S1 for 

y#Ois 
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For a fixed p a monotonic rotation is realized if the altered parameter values @I and 
s, are chosen so as to fulfill the condition 

In particular, a monotonic rotation is realized when CC alid s are varied along the k - 
curves (as = J%, 0 < k < m) or the 1~ -curves (a / s = X, 0 <‘H. < m).The fam- 

ilies of k - and 1c -curves cover, each separately, the whole part being examined of 
the as-plane. The curves of the altered and original systems intersect on the straight 
line Y = 0 with tangency on the q-axis. As fi varies the field of directions on the low- 

er and upper half-cylinders rotate in opposite directions. In this case the straight line 
Y = (1 is the contact curve. 

2. Qualitative ltructura: at the end-pointr of the kmcurve:. 
In order to observe the change in the qualitative structure of the phase space under a 
monotonic rotation of the field directions with the parameters varying along the k -cu- 
rves, we need to know the structures of the partitioning of the phase space by the end- 

points of the k-curves for small and for large s (and, respectively, for large and small 
a). In a cylindrical phase space (on the strip -_n & cp < rt with the edges identified) 

the equilibrium states are o1 (arcsin p, 0). a stable focus or node, and 02 (X - 
arcsin j3, 0) , a saddle. The directions by which the trajectories of system (1.1) enter 
into the saddle are determined by the equation 

For 0 < fl < 1 one of the roots is always negative and corresponds to the direction by 
which an w-separatrix enters into the saddle. Suppose that on some straight line cp = 
TO we mark, in the interval (arcsin p, n - arcsin 1-3) between the singular points, 
the coordinate qO of the point of intersection of the straight line with the o-separat- 
rix of the saddle. If as s decreases we move in the parameter space along the k-curves, 
then the vector field will rotate monotonically clockwise and 7s will grow. At the same 
time, on the lower branch (having positive ordinate values only outside the interval 

(arcsin p, n - amin p)) of the isocline of horizontal slopes on the upper half-cylin- 
der, the maximum, equal to 

Y1 = [k - fk” - s2 (Pm (P + I)-’ 

for cp = -s-&,will decrease unboundedly. Therefore. for any k we can select s such 
that the inequality Yi < qs is fulfilled, and then the o -separatrix enters the saddle, 
twisting away from the upper half-cylinder. For p > 0 the point at infinity is stable on 

the upper half-cylinder. Indeed, if for large y > 0 we set y = 1 / p and we construct 
in the usual way the successor function in the neighborhood of a small P = PO [4], we 
obtain 

Pl (an) - PO (0) = -2npp,3 + 4nasp,4 + *** 

Hence follows the existence of at least one unstable limit cycle situated above the min- 
imum of the upper branch of the isocline positive slopes. i.e., for 

Y > Y, = [k + 1/k2 - s2 (P + 1>‘1 (P + I>-’ 

Since for small s the curve P,’ + Qy’ E 2k (Y2 - s”) (y” + s~)-~ = 0 does not 
intersect the upper branch of the isocline of horizontal slopes ( y2 > s always for 
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small s ). this cycle is unique. For small s the curve f’,’ + Qr,’ T= 0 also does not 
intersect the lower branch of the isocline of horizontal slopes, therefore, limit cycles 
cannot exist around the point 0, ~ 

Limit cycles cannot exist also on the lower half-cylinder. System (1.1) is equivalent 
to the equation 

ZJ dy + sin tp dcp = 
( 

@ - 2~s --$F d(p 
) 

Therefore, for a closed contour girding the cylinder and made up from the trajectories 
of system (1.1) we have n: 

SC p - 2~s &I d(p = 0 
--x 

but this is impossible for Y < 0 and for positive fi, a and s . 
The qualitative pattern of the phase space for sufficiently small s on any curve as = 

k is shown in Fig. 1 (I). 

Fig. 1. 

Let us observe the behavior of the saddle’s a-separatrices for large S. We consider two 

conservative comparison systems 

dcp I dt = y, dy I dt = p - sin cp (2.1) 

dcp / dt = y, dy / dt = fl - sin cp -- k I s (2.2) 

(the condition 0 < p - k / s < 1 is fulfilled for any k at large s ). For system 

(2.1) the point 0, (arcsin p, 0) . 1s an equilibrium state of the center type, and the sep- 

aratrices of the saddle 0, (x - arcsin p, 0) form a loop around O1. The field of 
directions of system (1.1) is turned clockwise relative to system (2.1). Therefore, the 
a -separatrix of the saddle of system (1. l), going onto the upper half-cylinder, enters 

the point 0,. 
On the upper half-cylinder the trajectories of system (2.2) are spirals winding around 

the cylinder and going off to infinity. On the upper half-cylinder the field directions of 

system (1.1) is turned counterclockwise relative to system (2.2) everywhere excepting 
the straight line y = s (there is tangency with the intersection on the strajght line Y = 

S ). Therefore, the a -separatrix of the saddle of system (1. l), going onto the upper 
half-cylinder, cannot intersect the a-separatrix of the saddle of system (2.2) issuing 

from the saddle 0 (n -- arcsin ([?I - k / s), 0) 1 ocated to the right of the saddle 

0, (x - arcsin fi, O), and must go off to infinity. There are no limit cycles. The be- 
havior of the a -separatrices completely determines the qualitative pattern of the phase 
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space partitioning. The qualitative pattern on any curve as = k for sufficiently large 
s is shown in Fig. 1 (0). 

3. Qualitative pattern, of the phsne #pace and pol#fble bifur- 
CL t i 011: for 0 < p < 1. The k -curves join the parameter space regions corres - 

ponding to the structures shown on Figs. 1 (I) and j(o). As s increases along the k - 
curves the points P, and P, of intersection of the straight line cp = SrCSiII fi with 

the a - and o-separatrices of the saddle on the upper half-cylinder come together, 

coincide for some value s = s, (k) (respectively, a = a,, (k)) and then diverge mon- 

otonically. The sets of points S, (k), a, (k), corresponding to a structurally unstable bi- 

furcation structure, for which the a- and o-separatrices of the saddle form a loop on 

the upper half-cylinder (P, and P, coincide) form a continuous curve L. Every k - 
curve intersects curve L at one point. As s passes through the value corresponding to 
an intersection of a 1~ -curve and curve L there arises and then collapses a separatrix 

loop on the upper half-cylinder, and here, from the separatrix loop there emerges a 
stable limit cycle since the saddle index (P,’ + ov’)z = -2a/ s is negative [l].LJn- 
der a subsequent increase of parameter s along the k-curves the limit cycles monoto- 
nically come together. Since there are no limit cycles for the structure in Fig. 1 (@on 

each k-curve there exists a point with coordinates a+ (k), a+ (k), for which the stable 
and unstable limit cycles come together, forming a semrsrable limit cycle. The corre- 

sponding structurally unstable bifurcation structure is shown on Fig. 1 (2--@.The set 
of points s’ (/c), a+ (k) f orms a continuous L+-curve intersecting each of the k -cur- 

ves at one point. The sequence of qualitative structures as s increases along the lc- 
curves is shown in Fig. 1 as a sequence of structurally stable structures (I), (2), (O).The 
structurally unstable structures corresponding to the bifurcation values of the parameters 
have been denoted by two digits indicating the structurally stable structures which they 
separate. 

Note. The qualitative structures intermediate between structures Fig. i(1) and (0) 
are determined only to within an additional even number of limit cycles girding the 

cylinder since under a rotation of the field limit cycles can arise from a condensation 
of the trajectories intersecting the curve PC + Qk=O, can be separated, and then can 

once again merge and vanish in other combinations. The logical possibility of such a 
behavior remains unavoidable. A similar thing cannot occur around the point 0, . Ha- 

ving once arisen the limit cycles cannot vanish since under a further rotation of the field 
separatrix loops do not arise around the point 0, and it does not have a change of stab- 
ility. 

4. Locrtfon of the bifurcation curve:. We remark that the k-curves 
intersect L and L+in a specific sequence and, therefore, L and L+ do not intersect. 

Let us show that the curve L+ lies whoIly in the strip fi < a < p f 1. We use the 
comparison system 

dq I dt = y, dy / dt = b - sin cp - a @<p-a<l) (4.1) 

Repeating the arguments of Sect. 2 for the comparison system (2.2). we find that system 
(1.1) does not have limit cycles for the parameter values 0 < a ( P The quantity 

P,’ + Qv’ vanishes on the upper half-cylinder only on the straight line y = s. If on 
the cylinder this straight line is a contact-free cycle, then double limit cycles cannot 
exist [S]. The straight line y = s is a contact-free cycle if 
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for all cp, i.e., i f a > p -/- 1. In the strip /3 < cr; ( p + I the curve Li intersects 
each of the k-curves and, as s decreases, goes from infinity into a point on the a - 
axis. 

Let us trace out the location of curve &. The qualitative pattern of the phase space 
on any x-curve for small s (for a = 3cs < 6) is shown in Fig. .i(G). As s increases 
along the X. -curves a monotonic rotation of the field directions takes place, and there- 
fore each X-curve can intersect L not more than once. Consider the comparison system 

dq i dt L= y, dy i dt = p - sin cp - 2%~ (4.2) 

As is well known [6, 71, for each fi (0 < 13 < 1) there exists E* ffjf such that for 
x = xt < X* (p) the w-separatrix of the saddle 0, (3 - arcsin {5? 0) of system 

(4.21, going out onto the upper half-cylinder, intersects the axis y = 0 and goes onto 
the lower half-cylinder, 

Let us write system (1,1) as 

clrl, i dt = y, dy i dt of fi - sin ‘p - 2xyz” (s” j- y2)-’ (.&3) 

The field of directions of system (4.3) is turned counterclockwise relative to the field 
of system (4.21, and,therefore.the w-separatrix of system (4.3) must go onto the lower 
half-cylinder for arbitrarily large s if x < ?c* (I’,). For s sufficiently large and for 

X < X* (p) unstable and stable limit cycles exist for (4.3) an the upper half-cylinder, 
For any ?c we can choose y, such that the expression 8 - sin cp - 2xy, preserves 

sign for all q.Therefore, for all large s and for (4.3). dy / dL ( 0 is fulfilled on the 
straight line $f = yr. But since on the upper half-cylinder the point at infinity is stable 

(see Sect, 2), an unstable limit cycle exists above the straight line y =--:: g1 for any x . 

The existence of trajectories winding around the upper half-cylinder from bottom to top, 
and, consequently, the existence of a stable limit cycle, follows from the location in- 
dicated above of the w-separanix of the saddle for x = xr < x* @). We note that 

0 < 2x” < 1.i9 for 0 < I”, < 1 andx* -+ Oas 0 -+ C) 183. 
The qualitative pattern of the phase space for sufficiently large s on any halfline 

cc = ~C,S is shown in Fig. I(?). Note that the x1- curves do not intersect L, Since 
,3~ -curves intersecting L exist and L goes off to infinity (1, intersects each of the k - 
curves, 0 ( /i < OO), L must have one of the n-curves as an asymptote. It cannot 
have another x-curve or some straight line parallel to the axis s = (1, as a second as- 
ymptote since it cannot intersect the kc-curve twice, As s decreases the curve L either 
goes to some point of the axis s = 0 or has this axis as its asymprote. Let us show that 
the first of these possibilities is realized. 

For the two systems Fig. J (@and (I),correspcnding to the parameter values s0 and 

sr ( sg curve y = v +sr (X.2) is the contact curve on the upper half-cylinder. If 
a-.> 13 -+ 1, the contact curve is situated above the maximum y;,, -_ S, (CX - 

Va% - (fj -I- i)Z) (@ 4 1) -r of the lower branch of the isocline of horizontal slopes. 
Suppose that we have marked, on some straight line cp == c~~O to the left of saddle 0, , 

the ordinates ?lo and Q of the points of intersection of the straight line with the 0 - 

separatrices for systems (0) and (7) respectively. In the strip 0 < y ( f%c the 
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vector field of system (1) is turned clockwise relative to the vector field of system (0) 
and therefore, ~1 > ?10 for all s1 < sO. Since the maximum _y,,, decreases unbound- 
edly as S1 decreases, grn < q1 for all sufficiently small S, and the o -separatrix of 

system (I) falls into the region above the maximum of the isocline and must wind 
around the upper half-cylinder. The qualitative structure of the phase space is shown in 

Fig. 1 (I), One unstable limit cycle exists on the upper half-cylinder. Such a structure 
is realized for any sufficiently small S for any a > p + 1 and consequently, the 

curves L cannot have the axis s = 0 as their asymptote . 

Note. The bifurcation curves L and L+ in the sP-plane were obtained in p, 31 

for various values of parameter c(. For small s the curves - the result of calculation and 
extrapolation - yield a qualitatively incorrect result. The curves cannot go to the origin 

of the s/3-plane because this is equivalent to the presence of asymptote s = 0 for the 

curves L and L+ in the a.5 -plane. 

The partitioning of the parameter space fol b = const (0 < p < 1) is shown in 
Fig, 2. The digits 0 - 2 are used to mark the parameter space regions corresponding 

to the structurally stable structures in Fig. 1 marked by the same digits. The bifurcation 
curves in Fig. 2, separating the appropriate regions, correspond to the structurally un- 

5 A 

stable structures in Fig. 1 marked by two digits, 
LC L 

6. Qurlitative prttern8 snd porrlble 
bifurcrtion, for fl=l rnd p>l. As p in- 
creases up to the value p = 1 the equilibrium states 
merge. The structure of the parameter space partit- 
ioning for p = 1 is the same as in Fig. 2. The co- 
rresponding structure of the phase space partitioning 

differs from the structure for the case 0 < fi < i 
only in that there is a saddle - node type equilibrium 

state on the o-axis. As 0 increases from the value 
fi = 1 the saddle - node equilibrium state vanishes 

I for a and s taken from region (2) of Fig. 2. A sta- 
I 

/ ble limit cycle appears from the a -separatrix of 
/ CL 

the saddle - node for values of a and s taken from 

P P+’ region (I). Here the bifurcation curve L vanishes 

Fig. 2 
on the parameter plane. 
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Necessary and sufficient evasion conditions in a second-order linear differential 
game are derived. This paper is closely related with [l - 41. 

1, We consider the second-order system 

&I& m: Ax --t u - v (1.1) 

Here 5 is a two-dimensional phase vector, A is a constant 2 x 2 matrix, u and u are 
the controls of the first and second players respectively. We assume that at any instant t 

r.! (t) m& u, v (t) .E Ii (1.2) 

where u is a segment on a plane, not reducing to a point, and V is a bounded closed 
convex set. The termination of the game means the hitting of system (1.1) onto a cert- 
ain preassigned point rrb. 

Let us define the notion of evasion. Let the “realization 7~ (.) " be a measurable time 

function u (t), t, < t < 00, satisfying constraint (1.2) for any t and formed by the 

first player during the game by some method. We take it that when t > t0 the second 

player can collide with any realization u (a). The second player is obliged to constr- 

uct his own control on the feedback principle by means of the discrete scheme {U ]rc], 
h [J-I}. The discrete time step A [z] i 0 defines the size of the semi-interval t* < 
t<t* + A [x[t*Il d uring which the control v is held constant and depends upon 
the position z [t*], where it is chosen in accordance with I: 1x1. 

The discrete scheme {V [zl, A [xl} . 1s said to be admissible if for any intial position 

XII and for any realization ZL( .) the switching instants of control u cannot tend from 
the left to a limit t, not coinciding with the instant at which system (1.1) hits onto 

pointm.ByZ’ lx,,; u [zl, A 1.~1, u (*)I we denote the time taken by system (1.1) to go 


